
12 Fidelity

Definition 1. The fidelity of two states ρ and σ is defined by

F (ρ, σ) := Tr
√
ρ1/2σρ1/2 = ‖σ1/2ρ1/2‖1.

It is a measure of how similar the states are.

Remark 2. For any isometry VB←A and positive operator MA, (VMV †)1/2 = VM1/2V †. It
follows that, for any operator LA, ‖V LV †‖1 = ‖L‖1 and for any states ρA, σA, F (V ρV †, V σV †) =
F (ρ, σ).

Remark 3. When one or both of the states is pure, the fidelity simplifies, F (|ψ〉〈ψ|, σ) =
(〈ψ|σ|ψ〉)1/2 and F (|ψ〉〈ψ|, |φ〉〈φ|) = |〈ψ|φ〉|.

For example the fidelity between the maximally mixed state 1Q/dQ and any pure state

|ψ〉〈ψ|Q is d
−1/2
Q . It turns out that the fidelity of two states is equal to the largest absolute

value of the inner-product between state vectors corresponding to purifications of the two
states. This result is called “Uhlmann’s theorem” and it makes it easy to derive a number
of properties of the fidelity.

Theorem 4 (Uhlmann’s theorem). For any R with dimR ≥ dimQ,

F (ρQ, σQ) = max{|〈ψ|φ〉| : TrR|ψ〉〈ψ|QR = ρQ,TrR|φ〉〈φ|QR = σQ}.

To prove Uhlmann’s theorem, we’ll need a few definitions and results which we’ll find
other uses for. Let’s denote by U(H) the set of all unitary operators in L(H)

Lemma 5. Any L ∈ L(H) has a polar decomposition L = U |L| for some U ∈ U(H).

Proof. We have L†L = |L|2. Since |L|2 ≥ 0 it has an eigendecomposition of the form
|L|2 =

∑d
j=1 λ

2
j |αj〉〈αj|, with λj ≥ λj+1, λj ≥ 0, and |L| =

∑d
j=1 λj|αj〉〈αj|. By Lemma 1

from section 9.1, L =
∑r

j=1 λj|φj〉〈αj|, where {|φj〉 : 1 ≤ j ≤ r} is an orthonormal set and

r = rank(|L|2) = rank(|L|). Extending this to an orthonormal basis {|φj〉 : 1 ≤ j ≤ d} and

setting U =
∑d

j=1 |φj〉〈αj|, we have L = U |L|, and U is unitary.

Definition 6. For any L ∈ L(HA,HB), the operator norm of L is

‖L‖op := max
‖|ψ〉A‖≤1

‖L|ψ〉‖.

Proposition 7. The operator norm has the following properties:

1. If V is an isometry then ‖V ‖op = 1.

2. ‖LR‖op = max‖|ψ〉‖≤1 ‖R|ψ〉‖
∥∥∥L R|ψ〉
‖R|ψ〉‖

∥∥∥ ≤ ‖R‖op‖L‖op.
3. ‖L‖op = max‖|φ〉B‖≤1,‖|ψ〉A‖≤1 |〈|φ〉, L|ψ〉〉| = max‖|φ〉B‖≤1,‖|ψ〉A‖≤1 |〈L†|φ〉, |ψ〉〉| = ‖L†‖op.
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4. For any U ∈ U(H), ‖LU‖op ≤ ‖L‖op‖U‖op = ‖L‖op = ‖LUU †‖op ≤ ‖LU‖op, so
‖LU‖op = ‖L‖op.

Lemma 8. For any L ∈ L(H), with polar decomposition L = U |L|,

‖L‖1 = max
Z∈L(H):‖Z‖op≤1

|TrZL| = max
Z∈U(H)

|TrZL|

and the maximum is achieved for Z = U † ∈ U(H).

Proof. Making the change of variables Z = Z ′U †, ‖Z‖op = ‖Z ′‖op by property (4) of the
operator norm, and the RHS is equal to max

‖Z′‖op≤1
|TrZ ′|L||. We need to show this is no more

than ‖L‖1: Let |L| =
∑

j λj|αj〉〈αj| be an eigendecomposition for |L|. Then, for any Z ′ with
‖Z ′‖op ≤ 1,

|TrZ ′|L|| =
∣∣∣∣∑

j

λj〈αj|Z ′|αj〉
∣∣∣∣ ≤∑

j

λj|〈|αj〉, Z ′|αj〉〉| (12.1)

≤
∑
j

λj‖|αj〉‖‖Z ′|αj〉‖ ≤
∑
j

λj = Tr|L| = ‖L‖1. (12.2)

using the triangle inequality, Cauchy-Schwarz and ‖|αj〉‖ = 1. Equality is achieved when
Z ′ = 1, which means Z = U †.

Proposition 9. If |ψ〉QR and |ψ′〉QR′ are both purifications of a state ρQ, that is

TrR|ψ〉〈ψ|QR = TrR′ |ψ′〉〈ψ′|QR′ = ρQ (12.3)

and dR ≥ dR′ , then there is an isometry V ∈ L(HR′ ,HR) such that

|ψ〉QR = VR←R′ |ψ′〉QR′ .

Proof. Given the equation (12.3), our proof of the Schmidt decomposition (Theorem 3, sec-
tion 9.1) shows that we can write |ψ′〉QR′ =

∑r
j=1

√
λj|αj〉Q⊗|β′j〉R′ and |ψ〉QR =

∑r
j=1

√
λj|αj〉Q⊗

|βj〉R, where
∑r

j=1 λj|αj〉〈αj|Q is an eigendecomposition of ρQ, and where {|β′j〉R′ : 1 ≤ j ≤ r}
and {|βj〉R : 1 ≤ j ≤ r} are both orthonormal sets. Extending the first of these to an or-

thonormal basis {|β′j〉R′ : 1 ≤ j ≤ dR′} forHR′ , we see that the isometry V =
∑dR′

j=1 |βj〉R〈β′j|R′

does the job.

12.0.1 Proof of Uhlmann’s theorem

Proof. Recall that TrR′Φ+
QR′ = 1Q. It follows that, for any density operator µQ, µ

1/2
Q ⊗

1R′|Φ+〉QR′ is a purification of µQ, because

TrR′µ
1/2
Q ⊗ 1R′ Φ+

QR′ µ
1/2
Q ⊗ 1R′ = µ

1/2
Q (TrR′Φ+

QR′)µ
1/2
Q = µQ.

From Proposition 9 we know that, for dimR ≥ dimQ, |ψ〉QR is a purification of ρQ iff

|ψ〉QR = ρ
1/2
Q ⊗VR←R′ |Φ+〉QR′ for some isometry V and, likewise, |φ〉QR = σ

1/2
Q ⊗UR←R′ |Φ+〉QR′

for some isometry U . Using these expressions for the purifications and the “transpose trick”

〈ρ|σ〉 =〈Φ+|σ1/2
Q ρ

1/2
Q ⊗W

T
R′ |Φ+〉QR′ = 〈Φ+|σ1/2

Q ρ
1/2
Q WQ ⊗ 1R′ |Φ+〉QR′ (12.4)

=TrQR′ |Φ+〉〈Φ+|QR′σ
1/2
Q ρ

1/2
Q WQ ⊗ 1R′ = TrQσ

1/2
Q ρ

1/2
Q WQ, (12.5)
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where WT
R′ := U †V and WQ := idQ←R′

WR′ . Since U and V are isometries, from the properties
of the operator norm, ‖WQ‖op ≤ 1. Furthermore, provided dR ≥ dQ, given any unitary WQ

we can find a suitable choice of U and V such that WT
R′ := U †V (e.g. taking V = 1R←R′W T

R′

and U = 1R←R′ does the trick). Therefore, by Lemma 8,

max{|〈ψ|φ〉| : TrR|ψ〉〈ψ|QR = ρQ,TrR|φ〉〈φ|QR = σQ} (12.6)

= max
‖W‖op≤1

|TrQσ
1/2
Q ρ

1/2
Q WQ| = ‖σ1/2

Q ρ
1/2
Q ‖1 = F (ρQ, σQ). (12.7)

Proposition 10. The fidelity has the following properties (♣♣: Prove this)

1. F (ρ, σ) = F (σ, ρ).

2. 0 ≤ F (ρ, σ) ≤ 1, and F (ρ, σ) = 1 iff ρ = σ.

3. F (V ρAV
†, V σAV

†) = F (ρ, σ) for any isometry VB←A.

4. F (TrBρAB,TrBσAB) ≥ F (ρAB, σAB).

5. F (MB←AρA,MB←AσA) ≥ F (ρA, σA) for any operation MB←A.

6. F (ρ⊗ τ, σ ⊗ τ) = F (ρ, σ).

12.0.2 Relationship to trace norm

The fidelity gives us a way quantify the similarity between two states. We have already seen
a way to measure their distinguishability: The trace norm.

Definition 11. The trace distance between two states is the function

D(ρ, σ) :=
1

2
‖ρ− σ‖1. (12.8)

The factor of 1/2 means that 0 ≤ D(ρ, σ) ≤ 1 for any two states.

Note that if we know that a system is either in state σ or state ρ, and each case has
equal probability, then the Holevo-Helstrom theorem says that the probability of correctly
identifying which state the system is in is (1 +D(ρ, σ))/2.

The fidelity and the trace distance between two states are related by the Fuchs-van de
Graaf inequalities:

Proposition 12. 1−D(ρ, σ) ≤ F (ρ, σ) ≤
√

1−D(ρ, σ)2. (♣♣: See example sheet 2.)

12.0.3 Fidelity of PPT states with φ+

Proposition 13. Let σAB be a state of AB where dA = dB = d. If σAB ∈ ppt(A : B) then
F (φ+

AB, σAB) ≤ 1/
√
d.
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Proof. It is easy to check that the transpose map tA←A is its own adjoint w.r.t. the Hilbert-
Schmidt inner product, and it is clearly its own inverse. Since the adjoint of a tensor product
of maps is the tensor product of the adjoints of the maps, the same remarks apply to the
partial transposition tA←A ⊗ idB←B. Therefore,

F (φ+
AB, σAB)2 =Trφ+

ABσAB = 〈φ+
AB, σAB〉 = 〈φ+

AB, t
A←AtA←AσAB〉

=〈tA←Aφ+
AB, t

A←AσAB〉 =
1

d
Tr[(tA←AΦ+

AB)(tA←AσAB)] =
1

d
TrFABtA←AσAB

≤1

d
max

‖ZAB‖op≤1

∣∣TrZABtA←AσAB
∣∣ =

1

d
‖tA←AσAB‖1 =

1

d
TrtA←AσAB =

1

d
.

We used the fact that tA←AΦ+
AB =: FAB =

∑
0≤i,j<d |i〉〈j|A⊗|j〉〈i|B is the unitary ‘flip’ operator,

and therefore has operator norm equal to one; the characterisation of the trace norm proven
in handout 8; and the fact that the trace norm of a positive operator is simply its trace, and
that tA←A preserves trace.

12.1 The fidelity of an operation

Definition 14. For any operation N B←A where dA = dB and state ρA we define

Fop(N B←A, ρA) := inf
R, ρRA

{F (idB←AρRA,N B←AρRA) : TrRρRA = ρA} (12.9)

=F (idB←AψRA,N B←AψRA), (12.10)

where ψRA is any purification of ρA. The equality is because we can always purify ρRA without
increasing the fidelity (see property 4), and since any two purifications are equivalent up to
an isometry between the purifying systems, which does not change the fidelity (property 3),
it doesn’t matter which one we use.

Fop measures how well the operation N B←A preserves the state of any composite system
RA when the part on which the operation acts is initially in the state ρA. This quantity (or
its square) is sometimes called the “entanglement fidelity”. Given a Kraus decomposition for
the operation, Fop has a simple expression in terms of the Kraus operators. For simplicity
we take B = A.

Proposition 15. If N A←A : ρA 7→
∑

mKmρAK
†
m then Fop(N A←A, ρA) =

√∑
m

∣∣TrKmρA
∣∣2.

Proof. Let ψRA = |ψ〉〈ψ|RA be a purification of ρA.

F (ψRA,N A←AψRA)2 =〈ψ|(idR←R ⊗N A←A|ψ〉〈ψ|RA)|ψ〉RA (12.11)

=
∑
m

|〈ψ|1R ⊗Km|ψ〉RA|2. (12.12)

Now, let |ψ〉RA =
∑

k

√
λk|φk〉R ⊗ |αk〉A be a Schmidt decomposition for |ψ〉RA. Using the

orthonormality of the |φk〉:

〈ψ|1R ⊗Km|ψ〉RA =
∑
j,k

√
λj〈φj|R ⊗ 〈αj|A1R ⊗Km

√
λk|φk〉R ⊗ |αk〉A (12.13)

=
∑
j

λj〈αj|AKm|αj〉A = TrKm

(∑
j

λj|αj〉〈αj|

)
= TrKmρA. (12.14)
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